HISTORIA DE LOS NÚMEROS REALES
El concepto de número real se originó cuando se constató la existencia de los números irracionales. Así, el conjunto de los números reales se origina como la unión del conjunto de los números racionales y el conjunto de los irracionales.
Debido a que el conjunto de números reales contiene al conjunto de números racionales, y éste a su vez contiene a los enteros que a su vez contiene los números naturales, se sigue que el conjunto de los números reales contiene también a los números enteros y a los números naturales. Asimismo, el conjunto de números reales contiene al de los números irracionales.
Por tanto, los números reales pueden ser racionales o irracionales, algebraicos o trascendentes; y positivos, negativos, o cero.
Puede definirse un número real, en estos términos, como un número positivo o negativo que puede o no tener cifras de decimal finito o infinito y puede representarse mediante un punto en la recta de números reales. En este sentido, el teorema fundamental de la geometría analítica establece que a cada número real le corresponde un punto en la recta de los números reales y recíprocamente
Propiedades y operaciones con los números reales
Dos números, en la recta numérica, que están a la misma distancia del cero pero en direcciones opuestas se denominan:
Inversos aditivos, opuestos o simétricos uno del otro. Por ejemplo.
3 es el inverso aditivo de -3, y -3 es el inverso aditivo de 3
El numero 0 (cero) es su propio inverso aditivo.
La suma de un número y su inverso aditivo es 0 (cero).
Inverso aditivo
Para cualquier número real de a, su inverso aditivo es –a.
Considere el número -4. Su inverso aditivo es -(-4). Como sabemos que este número debe ser positivo, esto implica que -(-4) = 4. Éste es un ejemplo de la propiedad del doble negativo.
Propiedad del doble negativo
Para cualquier número real a, -(-a) = a
Por la propiedad del doble negativo, -(-6.9) = 6.9
Valor absoluto
El valor de cualquier número distinto del cero siempre será un nuero positivo, y el valor absoluto de 0 es 0.
Para determinar el valor absoluto de un número real, use la definición siguiente.

El valor absoluto de un número puede determinarse por medio de la definición. Por ejemplo.

Para multiplicar dos números con signos iguales, ambos positivos o ambos negativos, multiplique sus valores absolutos. La respuesta es positiva.
Para multiplicar dos números con signos diferentes, uno positivo y el otro negativo, multiplique sus valores absolutos. La respuesta es negativa.
Ejemplo

Propiedad del cero en la multiplicación
Para cualquier numero a,
Para dividir dos números con signos iguales, ambos positivos o ambos negativos, divida sus valores absolutos. La respuesta es positiva.
Para dividir dos números con signos diferentes, uno positivo y el otro negativo, divida sus valores absolutos. La respuesta es negativa.
Ejemplos.

No hay comentarios:
Publicar un comentario